

IGURE 15.42 The greater the polar toment of inertia of the cross-section of a sam about the beam's longitudinal axis, the iffer the beam. Beams A and B have the time cross-sectional area, but A is stiffer.

Similarly, the moment of inertia about the y-axis is

$$I_{y} = \int_{0}^{1} \int_{0}^{2x} x^{2} \delta(x, y) \, dy \, dx = \frac{39}{5}.$$

Notice that we integrate y^2 times density in calculating I_x and x^2 times density to find I_y . Since we know I_x and I_y , we do not need to evaluate an integral to find I_0 ; we can use the equation $I_0 = I_x + I_y$ from Table 15.2 instead:

$$I_0 = 12 + \frac{39}{5} = \frac{60 + 39}{5} = \frac{99}{5}.$$

The moment of inertia also plays a role in determining how much a horizontal metal beam will bend under a load. The stiffness of the beam is a constant times I, the moment of inertia of a typical cross-section of the beam about the beam's longitudinal axis. The greater the value of I, the stiffer the beam and the less it will bend under a given load. That is why we use I-beams instead of beams whose cross-sections are square. The flanges at the top and bottom of the beam hold most of the beam's mass away from the longitudinal axis to increase the value of I (Figure 15.42).

xercises 15.6

lates of Constant Density

- 1. Finding a center of mass Find the center of mass of a thin plate of density $\delta = 3$ bounded by the lines x = 0, y = x, and the parabola $y = 2 x^2$ in the first quadrant.
- 2. Finding moments of inertia Find the moments of inertia about the coordinate axes of a thin rectangular plate of constant density δ bounded by the lines x = 3 and y = 3 in the first quadrant.
- 3. Finding a centroid Find the centroid of the region in the first quadrant bounded by the x-axis, the parabola $y^2 = 2x$, and the line x + y = 4.
- **l. Finding a centroid** Find the centroid of the triangular region cut from the first quadrant by the line x + y = 3.
- i. Finding a centroid Find the centroid of the region cut from the first quadrant by the circle $x^2 + y^2 = a^2$.
- i. Finding a centroid Find the centroid of the region between the x-axis and the arch $y = \sin x$, $0 \le x \le \pi$.
- '. Finding moments of inertia Find the moment of inertia about the x-axis of a thin plate of density $\delta = 1$ bounded by the circle $x^2 + y^2 = 4$. Then use your result to find I_y and I_0 for the plate.
- Finding a moment of inertia Find the moment of inertia with respect to the y-axis of a thin sheet of constant density $\delta = 1$ bounded by the curve $y = (\sin^2 x)/x^2$ and the interval $\pi \le x \le 2\pi$ of the x-axis.
- . The centroid of an infinite region Find the centroid of the infinite region in the second quadrant enclosed by the coordinate axes and the curve $y = e^x$. (Use improper integrals in the mass-moment formulas.)
- . The first moment of an infinite plate Find the first moment about the y-axis of a thin plate of density $\delta(x, y) = 1$ covering

the infinite region under the curve $y = e^{-x^2/2}$ in the first quadrant.

2

2

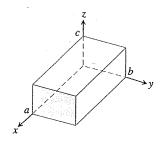
Plates with Varying Density

- **11.** Finding a moment of inertia Find the moment of inertia about the x-axis of a thin plate bounded by the parabola $x = y y^2$ and the line x + y = 0 if $\delta(x, y) = x + y$.
- 12. Finding mass Find the mass of a thin plate occupying the smaller region cut from the ellipse $x^2 + 4y^2 = 12$ by the parabola $x = 4y^2$ if $\delta(x, y) = 5x$.
- 13. Finding a center of mass Find the center of mass of a thin triangular plate bounded by the y-axis and the lines y = x and y = 2 x if $\delta(x, y) = 6x + 3y + 3$.
- 14. Finding a center of mass and moment of inertia Find the center of mass and moment of inertia about the x-axis of a thin plate bounded by the curves $x = y^2$ and $x = 2y y^2$ if the density at the point (x, y) is $\delta(x, y) = y + 1$.
- 15. Center of mass, moment of inertia Find the center of mass and the moment of inertia about the y-axis of a thin rectangular plate cut from the first quadrant by the lines x = 6 and y = 1 if $\delta(x, y) = x + y + 1$.
- 16. Center of mass, moment of inertia Find the center of mass and the moment of inertia about the y-axis of a thin plate bounded by the line y = 1 and the parabola $y = x^2$ if the density is $\delta(x, y) = y + 1$.
- 17. Center of mass, moment of inertia Find the center of mass and the moment of inertia about the y-axis of a thin plate bounded by the x-axis, the lines $x = \pm 1$, and the parabola $y = x^2$ if $\delta(x, y) = 7y + 1$.

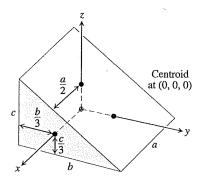
- 18. Center of mass, moment of inertia Find the center of mass and the moment of inertia about the x-axis of a thin rectangular plate bounded by the lines x = 0, x = 20, y = -1, and y = 1 if $\delta(x, y) = 1 + (x/20)$.
- 19. Center of mass, moments of inertia Find the center of mass, the moment of inertia about the coordinate axes, and the polar moment of inertia of a thin triangular plate bounded by the lines y = x, y = -x, and y = 1 if $\delta(x, y) = y + 1$.
- 20. Center of mass, moments of inertia Repeat Exercise 19 for $\delta(x, y) = 3x^2 + 1$.

Solids with Constant Density

21. Moments of inertia Find the moments of inertia of the rectangular solid shown here with respect to its edges by calculating I_x , I_y , and I_z .



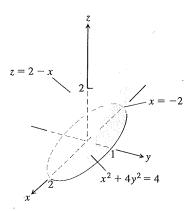
22. Moments of inertia The coordinate axes in the figure run through the centroid of a solid wedge parallel to the labeled edges. Find I_x , I_y , and I_z if a = b = 6 and c = 4.



- 23. Center of mass and moments of inertia A solid "trough" of constant density is bounded below by the surface $z = 4y^2$, above by the plane z = 4, and on the ends by the planes x = 1 and x = -1. Find the center of mass and the moments of inertia with respect to the three axes.
- **24. Center of mass** A solid of constant density is bounded below by the plane z = 0, on the sides by the elliptical cylinder $x^2 + 4y^2 = 4$, and above by the plane z = 2 x (see the accompanying figure).
 - **a.** Find \overline{x} and \overline{y} .
 - b. Evaluate the integral

$$M_{xy} = \int_{-2}^{2} \int_{-(1/2)\sqrt{4-x^2}}^{(1/2)\sqrt{4-x^2}} \int_{0}^{2-x} z \, dz \, dy \, dx$$

using integral tables to carry out the final integration with respect to x. Then divide M_{xy} by M to verify that $\bar{z} = 5/4$.



- **25. a. Center of mass** Find the center of mass of a solid of constant density bounded below by the paraboloid $z = x^2 + y^2$ and above by the plane z = 4.
 - **b.** Find the plane z = c that divides the solid into two parts of equal volume. This plane does not pass through the center of mass.
- **26. Moments** A solid cube, 2 units on a side, is bounded by the planes $x = \pm 1$, $z = \pm 1$, y = 3, and y = 5. Find the center of mass and the moments of inertia about the coordinate axes.
- 27. Moment of inertia about a line A wedge like the one in Exercise 22 has a = 4, b = 6, and c = 3. Make a quick sketch to check for yourself that the square of the distance from a typical point (x, y, z) of the wedge to the line L: z = 0, y = 6 is $r^2 = (y 6)^2 + z^2$. Then calculate the moment of inertia of the wedge about L.
- **28.** Moment of inertia about a line A wedge like the one in Exercise 22 has a = 4, b = 6, and c = 3. Make a quick sketch to check for yourself that the square of the distance from a typical point (x, y, z) of the wedge to the line L: x = 4, y = 0 is $r^2 = (x 4)^2 + y^2$. Then calculate the moment of inertia of the wedge about L.

Solids with Varying Density In Exercises 29 and 30, find

- a. the mass of the solid. b. the
- b. the center of mass.
- 29. A solid region in the first octant is bounded by the coordinate planes and the plane x + y + z = 2. The density of the solid is $\delta(x, y, z) = 2x$.
- **30.** A solid in the first octant is bounded by the planes y = 0 and z = 0 and by the surfaces $z = 4 x^2$ and $x = y^2$ (see the accompanying figure). Its density function is $\delta(x, y, z) = kxy$, k a constant.

